ModernBERT-base官网
高效处理长文本的双向编码器模型
ModernBERT-base简介
需求人群:
"目标受众为需要处理长文本数据的开发者、数据科学家和研究人员。ModernBERT-base由于其长文本处理能力和对英文及代码数据的优化,特别适合于自然语言处理、代码检索和混合(文本+代码)语义搜索等场景。"
使用场景示例:
在大规模文档中进行信息检索
对代码库进行语义搜索以找到相关函数或模块
在大型语料库中进行文本分类和语义搜索
产品特色:
支持长达8192个token的长文本处理能力
Rotary Positional Embeddings (RoPE) 支持长上下文
Local-Global Alternating Attention 提升长输入的效率
Unpadding和Flash Attention 优化推理效率
适用于大规模文本和代码数据的预训练
无需token type IDs,简化了下游任务的使用
支持使用Flash Attention 2以获得更高的效率
使用教程:
1. 安装transformers库:使用pip安装git+https://github.com/huggingface/transformers.git。
2. 加载模型和分词器:使用AutoTokenizer和AutoModelForMaskedLM从预训练模型加载分词器和模型。
3. 准备输入文本:将待处理的文本输入到分词器中,获取模型需要的输入格式。
4. 模型推理:将处理好的输入数据传递给模型,进行推理。
5. 获取预测结果:对于Masked Language Model任务,获取模型对[MASK]位置的预测结果。
6. 应用下游任务:对于分类、检索或问答等任务,可以对ModernBERT进行微调以适应特定任务。
7. 使用Flash Attention 2优化效率:如果GPU支持,安装flash-attn库并使用以获得更高的推理效率。
ModernBERT-base官网入口网址
https://github.com/googlecreativelab/gemini-demos/tree/main/voice-cursor
小编发现ModernBERT-base网站非常受用户欢迎,请访问ModernBERT-base网址入口试用。
数据统计
数据评估
本站Home提供的ModernBERT-base都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Home实际控制,在2024年 12月 25日 上午9:22收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Home不承担任何责任。